EAS 93°Congress 4-7 May 2025 Glasgow, UK

A novel PCSK9 Epigenetic Editor Achieves Maximal Pharmacology with Best-in-class Potency in Non-human Primates

John Xiong VP, Preclinical Pharmacology

Disclosure Slide

	No, nothing to disclose
✓	Yes, please specify:

Company Name	Honoraria/ Expenses	Consulting/Advisory Board	Funded Research	Royalties/ Patent	Stock Options	Ownership/ Equity Position	Employee	Other (please specify)
nChroma Bio							х	

Epigenetics: the central regulator of gene expression

Durable change in phenotype without a change in genotype

Gene is Active
DNA is Open and Accessible

Epigenetic Repressor Methylates Targets

Transient Application

Epigenetic Activator Demethylates Targets Gene is Inactive
DNA is Closed and Inaccessible

nChroma's epigenetic editor is a modular genomic medicine

DNA binding domain

precisely localizes effector domains to target sequence

Transcription effector
domain transiently represses
target genes

Methylation effector domain durably silences target genes

RNA / LNP

Delivered via LNP for liver-targeted indications

Single dose of prototype PCSK9 epigenetic editor (PCSK9-EE) drives durable, complete PCSK9 silencing in vivo

- Model System: Transgenic mouse containing the human PCSK9 locus
- Test Product: An early generation epigenetic editor
- >98% silencing maintained for 1 year post single IV injection
- Silencing at transcriptional level (i.e., no mRNAs produced)

Experiment

- hPCSK9 Tg mouse
- Single IV administration
- PCSK9 analysis by ELISA

Prototype PCSK9-EE-driven silencing is fully maintained after partial hepatectomy

- 70% partial hepatectomy (PHx) is a gold standard surgical model to induce liver regeneration in rodents
- Single administration of PCSK9-EE demonstrated durable PCSK9 silencing through full liver regeneration post-partial hepatectomy

Prototype PCSK9-EE-driven methylation is fully maintained after partial hepatectomy

Prototype PCSK9-EE is highly specific with no detectable off-target changes

RNA Expression

Differentially Expressed Gene: PCSK9

Methylation Profiling at CpG-Enriched Sites

Differentially
Methylated Region:
PCSK9

Genome-Wide Methylation Profiling

- PCSK9-EE is highly specific
- No significant off-target changes in gene expression with PCSK9-EE in primary human hepatocytes as measured by RNA-seq
- No significant off-target changes in methylation with PCSK-EE in primary human hepatocytes as measured by Illumina Methylation Array and whole genome bisulfite sequencing

Construct optimization efforts have led to a significant increase in potency

PCSK9-EE(7000) achieved durable, saturating LDL-c lowering efficacy at therapeutically relevant dose in NHPs

LDL-C Reduction

Vehicle 1.0 mg/kg 0.5 mg/kg 1.5 mg/kg 125 100 75 50 28 56 84 112 140 168 196 224 252 280 308 336 Days Post Dose

LDL-c reduction % calculated as time-averaged LDL-c reduction following PCSK9-EE treatment

Safety

- PCSK9-EE(7000) was well-tolerated without any clinical signs in all animals
- Transient, non-adverse elevations in liver transaminases that normalized within 2 weeks post-dose at highest dose tested

PCSK9-EE(7500) achieved >3X improved potency over 7000 series editor in NHPs

PCSK9-EE(7500) editor achieved **best-in-class** potency in NHPs

 nChromaBio is using the epigenetic editing technology to develop a therapy for chronic HBV (CTA in 2025) and has prioritized PCSK9 program for partnering

Acknowledgements

Thank you to the entire nChroma Bio team, our collaborators, and partners!

LNP Technology provided by Acuitas Therapeutics, Inc.

